Chapter 23: Advanced algebra

Starter 23 [page 446]
By counting, the numbers of squares/rectangles are 9, 36, 30. Thus \(k = 4 \).

To prove the formula, select one corner of a square/rectangle at random. On an \(m \) by \(n \) grid, there are \(m + 1 \) possible choices for the \(x \) coordinate and \(n + 1 \) for the \(y \) coordinate, giving \((m + 1)(n + 1) \) possibilities altogether.

Now choose a second corner, not in the same row or column as before; this can be done in \(mn \) ways. Thus there would seem to be \(m(m + 1)n(n + 1) \) choices altogether.

However, each different square/rectangle gets counted four times in this way. Thus the number is \((m + 1)(n + 1) \div 4 \) and the result is proved.

Exercise 23.1 [page 450]
1 \(3\sqrt{2} \) 2 \(4\sqrt{2} \) 3 \(5\sqrt{2} \)
4 \(3\sqrt{5} \) 5 \(5\sqrt{6} \) 6 \(2\sqrt{6} \)
7 \(3\sqrt{11} \) 8 \(6\sqrt{3} \) 9 \(6\sqrt{3} \)
10 \(7\sqrt{2} \) 11 \(3\sqrt{5} \) 12 \(7\sqrt{2} \)
13 \(4\sqrt{11} \) 14 \(4\sqrt{2} \) 15 \(12 + 4\sqrt{5} \)
16 \(8 + 7\sqrt{2} \) 17 \(22 \) 18 \(22 + 11\sqrt{5} \)
19 \(\frac{2 + 3\sqrt{5}}{5} \) 20 \(2 - \sqrt{7} \) 21 a) \(-1\)
b) \(-3(1 - \sqrt{2}) \)
23 \(-3(2 + \sqrt{5}) \) 24 a) \(8 + 3\sqrt{5} \) b) \(10 - 4\sqrt{3} \)
25 a) \(4 + 2\sqrt{7} \) b) \(18 + 2\sqrt{7} \) c) \(6 + 6\sqrt{7} \)
26 \((12\sqrt{7} - 16)\) cm 27 \(-2 + \sqrt{11} \)
28 \(\frac{1 + \sqrt{5}}{2} \) 29 \(-3 \pm \sqrt{13} \) 30 \(-4 \pm \sqrt{10} \)
31 \(\frac{5\sqrt{17}}{2} \) 32 \(x = -3 - \sqrt{11} \) or \(x = \sqrt{11} - 3 \)

Exercise 23.2 [page 453]
1 \(8x + 3 \) 2 \(5x + 2 \) 3 \(5x + 2 \)
4 \(5x + 2 \) 5 \(13x + 4 \) 6 \(11x + 2 \)
7 \(5x + 5 \) 8 \(5x + 7 \) 9 \(5x + 7 \)
10 \((x + 1)(x + 2) \) 11 \(3(x + 1)(x + 2) \) 12 \(3(x + 1)(x + 2) \)
13 \(3 \) 14 \(2 \) 15 \(3 \)
16 \(-2 \) 17 \(3 \) 18 \(5 \)
19 \(4, \frac{3}{2} \) 20 \(2, -\frac{4}{11} \)

Exercise 23.3 [page 455]
1 \(x + 3 \) 2 \(3x + 5 \)
3 \(2x + 1 \) 4 \(2x + 1 \)
5 \(x + 2 \) 6 \(5(x + 3)^2 \)
7 \(x + 10 \) 8 \(3x + 2 \)
9 \(x - 5 \) 10 \(\frac{4}{(2x + 1)^2} \)
11 \(x + 8 \) 12 \(\frac{x}{2} \)
13 \(\frac{x}{x + 2} \) 14 \(\frac{x + 2}{x + 7} \)
15 \(\frac{x + 2}{x + 4} \) 16 \(\frac{x + 5}{x + 3} \)
17 \(\frac{x + 3}{x + 4} \) 18 \(\frac{x + 4}{x + 2} \)
19 \(\frac{x + 5}{x - 3} \) 20 \(\frac{1}{x - 4} \)

Exercise 23.4 [page 457]
1 \(x = 2 \) and \(y = 2 \) or \(x = -1 \) and \(y = -1 \)
2 \(x = 3 \) and \(y = 10 \) or \(x = -2 \) and \(y = 5 \)
3 \(x = 3 \) and \(y = 19 \) or \(x = -1 \) and \(y = 3 \)
4 \(x = 2 \) and \(y = 20 \) or \(x = \frac{1}{2} \) and \(y = \frac{1}{2} \)
5 \(x = 4 \) and \(y = 17 \) or \(x = 0 \) and \(y = 1 \)
6 \(x = 2 \) and \(y = 0 \) or \(x = -1 \) and \(y = -3 \)
7 \(x = 3 \) and \(y = 1 \) or \(x = -1 \) and \(y = -3 \)
8 \(x = 2 \) and \(y = 2 \) or \(x = -\frac{1}{2} \) and \(y = -2\frac{1}{2} \)
9 \(x = 3 \) and \(y = -1 \) or \(x = 1 \) and \(y = -3 \)
10 \(x = 1 \) and \(y = -6 \) or \(x = 6 \) and \(y = -1 \)
11 \(x = 5 \) and \(y = 13 \) or \(x = -3 \) and \(y = -3 \)
12 \(x = 6 \) and \(y = 1 \) or \(x = -5 \) and \(y = -10 \)
13 \(x = 1 \) and \(y = 2 \) or \(x = 2 \) and \(y = 4 \)
14 \(x = 2 \) and \(y = -3 \) or \(x = 3 \) and \(y = -1 \)
15 \(x = 5 \) and \(y = 3 \) or \(x = 0.6 \) and \(y = -5.8 \)
16 \(x = 1 \) and \(y = 2 \) or \(x = -2 \) and \(y = -1 \)

Exercise 23.5 [page 458]
1 \(x = \frac{5}{3 - m} \) 2 \(x = \frac{d - b}{a - c} \)
3 \(x = \frac{2k}{2 - k} \) 4 \(y = \frac{1 - 2d}{d - 1} \)
5 \(t = \frac{bc - a}{1 - c} \) 6 \(x = \frac{n + 2}{3 - k} \)
7 \(x = \frac{ab}{1 - 5b} \) 8 \(x = \frac{3}{a - 2} \)
9 \(x = \frac{ka}{1 - k} \) 10 \(u = \frac{vf}{v - f} \)

Exercise 23.6 [page 459]
1 Let the numbers be \(n \) and \(n + 1 \).
Their sum is \(2n + 1 \) which is odd.
2 Let the numbers be \(2n \) and \(2m \).
Their product is \(4mn = 2 \times 2mn \), hence even.
3 Let the numbers be \(2n + 1 \) and \(2m + 1 \).
Their product is \((2n + 1)(2m + 1) = 4mn + 2n + 2m + 1 = 2 \times (2mn + n + m) + 1\), hence odd.
4 Let the numbers be \(n, n + 1 \) and \(n + 2 \).
Their sum is \(n + n + 1 + n + 2 = 3n + 3 \)
\[= 3 \times (n+1), \]
hence a multiple of 3.

5 Let the numbers be \(2n + 1 \) and \(2m + 1 \).
Then
\[(2n+1)^2 - (2m+1)^2 = [4n^2 + 4n + 1] - [4m^2 + 4m + 1] \]
\[= 4n^2 + 4n + 1 - 4m^2 - 4m - 1 \]
\[= 4n^2 + 4n - 4m^2 - 4m \]
\[= 4(n^2 + n - m^2 - m), \]
hence a multiple of 4.

6 a) \(4 \times \frac{1}{2}ab = 2ab \)
b) i) \(c^2 + 2ab \)
ii) \(a^2 + b^2 + 2ab \)
d) Pythagoras’ theorem

7 b) Setting \(x = 3 \) gives \(301 \times 299 = 89 \, 999, \) so not prime.

8 Let the consecutive odd numbers be \(2n - 1 \) and \(2n + 1 \).
Then
\[(2n+1)^2 - (2n-1)^2 = [4n^2 + 4n + 1] - [4n^2 - 4n + 1] \]
\[= 4n^2 + 4n + 1 - 4n^2 + 4n - 1 \]
\[= 8n, \] hence a multiple of 8.

Review Exercise 23 (page 460)

2 \(a = 3 \)

3 a) 10
b) 3
c) 2

4 \(\sqrt{22} \)

5 a) i) 3.5
ii) 1

b) 3

6 a) 4
b) 2
c) 83\frac{1}{3} \%

7 a) \(\frac{3x}{(x-2)(x+4)} \)
b) 8, -1

8 10\frac{1}{2}

9 a) 5n

b) Two consecutive multiples of 5 are \(5n \) and \(5(n + 1) \)

i) \(5n + 5(n + 1) = 5n + 5n + 5 = 10n + 5; \) 10n is even for all integer values of \(n, \) hence 10n + 5 is odd as 5 is odd and an even number + odd number = odd number.

ii) \(5n \times 5(n + 1) = 25n(n + 1); \) when \(n \) is odd then \((n + 1) \) is even and when you multiply by an even number the result is even; likewise, when \(n \) is even the product is even.

10 \((n+1)^2 - (n-1)^2 = (n^2 + 2n + 1) - (n^2 + 2n - 1) = 4n \)
\(4n \) is a multiple of 4 for all values of \(n \)

11 a) \((2a - 1)^2 - (2b - 1)^2 = (4a^2 - 4a + 1) - (4b^2 - 4b + 1) \)
\[= 4a^2 - 4b^2 - 4a + 4b \]
\[= 4(a-b)(a+b) - 4(a-b) \]
\[= 4(a-b)(a+b - 1) \]

b) The difference between the squares of any two odd numbers is
\((2a - 1)^2 - (2b - 1)^2 = 4(a-b)(a+b - 1) \)
which is a multiple of 4.

To prove \((2a - 1)^2 - (2b - 1)^2 \) is a multiple of 8 then need to show that \((a-b)(a+b - 1) \) is a multiple of 2 (since \(8 = 4 \times 2 \).

When \(a \) and \(b \) are either both even or both odd then \((a-b) \) is even and so \((a-b) \) is a multiple of 2.

When only one of \(a \) or \(b \) is even then \((a+b - 1) \) is even and so \((a+b - 1) \) is a multiple of 2.

Hence \(4(a-b)(a+b - 1) \) is a multiple of 8 as required.

12 2 is prime and \(2^2 + 3 = 7 \).

13 a) \((x+1)(2x+5) \)
b) \(\frac{11x+15}{(x+1)(2x+5)} \)

14 a) \(23 - 6x \)
b) \(32x^2y^{15} \)
c) \(\frac{2(n-1)}{n-2} \)

15 a) 7
b) \(\frac{2x}{2x+3} \)

16 \(y = \frac{2k}{4 + 3k} \)

17 \(x = \frac{ay}{y+1} \)

18 \(x = 2 \) and \(y = 5 \) or \(x = -1.4 \) and \(y = -5.2 \)

19 a) If \(y = 6 \) then \(x^2 = -11 \) so Bill must be wrong.
b) \(x = 3 \) and \(y = 4 \) or \(x = -1.4 \) and \(y = -4.8 \)

Internet Challenge 23 (page 463)

1 Pythagoras’ theorem

2 Circumference of a circle

3 Area of a trapezium

4 Voltage = Current \(\times \) Resistance

5 Volume of a cone

6 Quadratic equation formula

7 Energy = mass \(\times \) (speed of light)\(^2\)

8 Surface area of a sphere

9 Distance \(s \) in terms of initial speed \(u, \) acceleration \(a \) and time \(t \)

10 Periodic time for a pendulum of length \(l \)

11 Euler’s formula for faces, edges and vertices of a polyhedron

12 Conversion from degrees Fahrenheit to degrees Celsius

13 Kinetic energy

14 Potential energy

15 Optics formula, \(u = \) object distance,
\(v = \) image distance, \(f = \) focal length

16 Electrical resistance (resistors in parallel)

17 Simple interest

18 Area of a triangle

19 Gravitational force of attraction

20 Work done by a force \(F \) moving over a distance \(d \)